Topic 1 - Molar Mass Ly Units Switch to grams (g) Subscript (tells us how many of a certain element we have)

Na: 239 A#IF
normal
element

Diatomics - N2O2F2 Cl2Br2 I2 # H2

H2=[1)(2) = 29

 $0_{2} = (16)(2) = 329$

Molar Mass of Compound/molecule

Must add different elements up

MgBrE = 24.3 + 80(2) = 184.3g $Mg + Br_2$

 $(NH_4)_2CO_3$ $SOL_0 N_2H_8CO_3 = (14)(2) + (1)(8) + 12 + (16)(3)$ $N_2 H_8 C O_3 = 969$

Determining the Molar Mass for a molecule:

"Molar Mass" is also known as molecular mass or molecular weight

- 1. Multiply the number of atoms of the first element by the subscript (the subscript tells you the # of atoms)
- 2. Multiply the number of atoms of each other element by its subscript.

3. Add those numbers together.

 $K_2CO_3 = K$: 2 atoms x 39.10 g = 78.20 g

C: 1 atom x 12.00 g = 12.00 gO: 3 atoms x 16.00 g = 48.00 g

**How do you know how many decimal places to use when getting the mass from the Periodic Table?????? ANSWER: Look at how many sig figs you have in the known. Use that many sig figs in the molar mass.

How to determine the mass for a DIATOMIC ELEMENT:

A Diatomic Element is an element on the Periodic Table that cannot exist by itself because it is too unstable.

There are 7 of these elements and you MUST know them. They are:

Element Name	Element Symbol (When it is by itself!)
Nitrogen	N_2
Oxygen	O_2
Fluorine	F ₂
Chlorine	Cl ₂
Bromine	Br ₂
lodine	12
Hydrogen	H_2

Remember... You ONLY use the subscript "2" when any of the elements to the side are BY THEMSELVES!

SO....Lets do some examples!

- 1. Determine the molar mass of Aluminum Chloride
- 2. Determine the molar mass of Dinitrogen Pentoxide

3. Determine the mass of Gold (II) Sulfate

Determining the Molar Mass for a molecule:

"Molar Mass" is also known as molecular mass or molecular weight

- 1. Multiply the number of atoms of the first element by the subscript (the subscript tells you the # of atoms)
- 2. Multiply the number of atoms of each other element by its subscript.

3. Add those numbers together.

Ex: $K_2CO_3 = K$: 2 atoms x 39.10 g = 78.20 g C: 1 atom x 12.00 g = 12.00 g O: 3 atoms x 16.00 g = 48.00 g

**How do you know how many decimal places to use when getting the mass from the Periodic Table?????? ANSWER: Look at how many sig figs you have in the known. Use that many sig figs in the molar mass.

How to determine the mass for a DIATOMIC ELEMENT:

A Diatomic Element is an element on the Periodic Table that cannot exist by itself because it is too unstable. There are 7 of these elements and you MUST know them. They are:

Element Name	Element Symbol (When it is by itself!)
Nitrogen	$N_2 = (14)(2) = 280$
Oxygen	$O_2 = (16)(2) = 32a$
Fluorine	$F_2 = (19)(2) = 389$
Chlorine	$Cl_2 = (35.5)(2) = 716$
Bromine	$Br_2 = (80)(2) = 11000$
Iodine	$ _{2} = (127)(2) = 2549$
Hydrogen	$H_2 = (1)(2) = 20$

Remember...

You ONLY use the subscript "2" when any of the elements to the side are BY THEMSELVES!

SO....Lets do some examples!

1. Determine the molar mass of Aluminum Chloride

27 + (35,5)(3) (= 133.5g)

2. Determine the molar mass of Dinitrogen Pentoxide

(14)(2)+(16)(5)

3. Determine the mass of Gold (II) Sulfate

197+32+(16)(4)=2939

	Mole Concept / Molarity / Empirical & Molecular Form	ulas (Card)) (
<u>M</u>	A	particles = smal)! particles = smal)! particles(in) imole!
	 listed as amu (atomic mass units) most commonly, if the "mole" being used is actually a "gram-mole", then table is in units of grams. The quantity for that mass is 6.02 x 10²³ atoms 	(known as Avogadro's #).
	molar volume has a defined temperature and pressure, known as STP – stands and pressure – defined as 0°C or 273 K) and 1.0 atmosphere. The molar volume	for standard temperature me at STP = 22.4 liters.
-	the number of particles is based on Avogadro's number – may be any type of people, eyeballs, etc.	particle – atoms, ions,
-	For most mole concept problems, you need to go through three steps:	ex jante
	#1. Convert the given quantity (whatever it is) into moles	5280Ft 5280Ft
	#2. Use the mole ratio between the substance given and the desired substance	5280ft=/mile
Pres	#3. Get out of moles and into the desired unit. Street St	1 mile = 5,280 ft Comparison/conversions
· n	Sea Yelvin la 12 13 Formula 12 13 moles moles	Fluorine F ₂ 389 F ₂ (g) = 1 mol F ₂ (s) Na 23 g Na = 1 mol Na (s)
_	# of particles molecular ma	
	Another Cy	
	CM1 " 18, 12	

Example problems:

A Report Sig Figs to least in the

1. What is the mass of a 256.0-ml sample of carbon dioxide gas at STP conditions?

0.2560 liters	1 mole	44.0 grams	VN 5043
	22.4 liters	1 mole	= 0.503 grams 0.5929 grams CO21a

2. How many carbon atoms are in the sample described in #1?

0.2560 liters	1 mole	1 mole C	6.02×10^{23} atoms of C	6.88 x 10 ²¹ atoms
-	22.4 liters	1 mole CO ₂	1 mole C	6.88 x 10 ⁻¹ atoms

3. How many atoms total are there in the gas sample of #1?

0.2560 liters	1 mole	3 moles atoms		2.07 1022
	22.4 liters	1 mole CO_2	1 mole of atoms	$2.06 \times 10^{22} \text{ atoms}$

2 oxygen

4. What is the mass, in grams, of a single molecule of carbon dioxide gas?

ex: H_n=3 atoms

8, 144	311181111111111111111111111111111111111	or varour aromae ga	
1 molecule of CO ₂	1 mole CO ₂	44.0 grams	$C_6H_{12}O_6 = 24$ atoms 7.30 x 10^{-23} grams $C_0 = 2$ atoms
	6.02×10^{23} molecules	1 mole CO ₂	7.50 x 10 grams (1) = Za 10110

La for single molecule Sigfig to 3 digits.

5. If a sample of cupric sulfate pentahydrate has 8.85 x 10²⁵ atoms of oxygen in it, what is the mass (in kg) of this sample? CuSO₄ · 5 H₂O Molecular Wt. = 249.6 g/mole

8.85×10^{25} atoms of O	1 mole of O	1 mole of cpd.	\mathcal{E}
	6.02×10^{23} atoms of O	9 moles of O	1 mole of cpd.

6. What is the percentage of metal in a 5.00-gram sample of potassium dichromate? $K_2Cr_2O_7$

note: the 5.00-gram sample does not matter; the percentage of metal in any size sample is the same.

Practice proper problem (like #1 from examples)

What is the mass of 3.26 L Cl_{2(a)} at STP?

A STP always tells you state of matter is GAS

· Practice Problem (like ex#2)
How many Oxygen atoms are there in 3.26 L CO 2(g)
at STP?

			23	23
3.76 Lange	1 mol CO2(g)	2 mol 0	6.02 × 10 atoms 0	1.75 × 10°
2(9)	20.11.20	1 mm CO2	1 mol 0	atoms 0
	22.4 6.002(9)	A A		
	•	male vatio		

mole ratio in COz 1 Carbon 2 Oxygen

Practice Problem (like ex#3)

How many total atoms are there in 3.26 L CO2(9) at STP?

3.26 460,60	1 mal (02/9)	3 mol atoms	6.02×10 atoms
2(4)	22.41662(9)	I mol Goz(g)	1 molatoms

= 2.63×10²³ atoms (026)

Practice Problem (like ex#4)

What is the mass, in grams, of a single molecule of nitrogen dioxide gas, NO 260?

molecule Attzia	Local Alexan	469 NO269)
2(9)	6.02× 10° molecules Htz (g)	(0) 2 HA (0)

=7.64×10 g

Practice problem (like ex.#4)

What is the volume of a single atom of sulfur trioxide (so₃(g)) gas at STP?

 $|A + SU_3(g)|$ | $|A + SU_3($

U5: Mole Concept Problem Set #1

1. How many molecules of dinitrogen pentoxide (N_2O_5) are there in a 5.00-gram sample of this gas?

2. What is the mass of a single atom of elemental manganese - a solid metal?

3. 67.8 grams of propane gas (C₃H₈) occupies what volume at STP conditions?

What is the percentage of water in a sample of magnesium sulfate heptahydrate (MgSO₄ * $7H_2O$) which is Epsom's salt?

What is the percentage of metal in a sample of potassium permanganate ($KMnO_4$)?

6. How many grams of oxygen are there in a 10.0-liter sample of sulfur trioxide (SO₃)?

7. A) What is the number of molecules in a 5.000-milligram sample of ethanol (C_2H_5OH)?

B) What is the number of atoms (total) in this same sample?

8. A) If there are 5.88×10^{25} ferrous ions in a sample of ferrous sulfate (FeSO₃), how many sulfate ions are also present?

B) What is the mass of this ferrous sulfate sample? OM 17

U5: Mole Concept Problem Set #1

How many molecules of dinitrogen pentoxide (
$$N_2O_5$$
) are there in a 5.00-gram sample of this gas?

$$\frac{5.009}{1089} \frac{N_2O_5}{1089} \frac{1 \text{ mol N}_2O_5}{1089} \frac{1089}{1089} \frac{N_2O_5}{1089} \frac{N_2O_5}{1089}$$

What is the mass of a single atom of elemental manganese - a solid metal? - no# given = goto 3 SF

67.8 grams of propane gas (C₃H₈) occupies what volume at STP conditions?

What is the percentage of water in a sample of magnesium sulfate heptahydrate (MgSO₄ * 7H₂O) which is Epsom's salt?

What is the percentage of metal in a sample of potassium permanganate (KMnO₄)?

How many grams of oxygen are there in a 10.0-liter sample of sulfur trioxide (SO₃)? - \sim SUME

7. A) What is the number of molecules in a 5.000-milligram sample of ethanol (C_2H_5OH)?
5.000 mgC2H50H 1 g C2H50H 1 mol C2H50H 6.02×10 molecules C2H50H 1000 mg C2H50H 46 g C2H50H 1 mol C2H50H
6.543 × 1019 molecules C2 HGOH
B) What is the number of atoms (total) in this same sample? $C_2H_5OH_{-9}$
5.000 mg C2 H50H 19 C2H50H 1 mol C2H50H 9 molators 6.02×1023 toms =
= 5.889 ×10 20 atoms total of C2H50H
8. A) If there are 5.88 x 10 25 ferrous ions in a sample of ferrous sulfate (FeSO ₃), how many sulfate ions are also present?
5.88×10 ²⁵ Fe ² ions mol Fe ²⁺ mol Soy ²⁻ Fe Soy ⁴ Fe Soy ⁴ mol Soy ²⁻ mol Soy
=5.88×10 ²⁵ So ₄ ² -ions
B) What is the mass of this ferrous sulfate sample?
OMITS.
8
whoops (Fesoy)